

Quantification of Reactive CO and H_2 on CuO_x -CeO₂ during CO Preferential Oxidation by Reactive Titration and Steady State Isotopic Transient Kinetic Analysis

Rong Zhang, Tala Haddadin, Diana P. Rubiano, Hari Nair, Christopher S. Polster, and Chelsey D. Baertsch*

School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States

ABSTRACT: The molar quantity of adsorbed CO and H₂ present on the surface of a mixed CuO_x-CeO₂ catalyst during CO preferential oxidation in H₂ at 353 K was quantified using both the reactive titration method and the steady-state isotopic-transient kinetic analysis (SSITKA). For the reactive titration method, either CO or H₂ was replaced by He during steady state reaction while monitoring the residual transient product formation of CO₂ or H₂O produced from the surface adsorbed CO or H₂ via catalytic oxidations. For SSITKA, ¹²CO was replaced by ¹³CO during steady state reaction while monitoring the transient product formation of ¹²CO₂. The amount of adsorbed reactive CO increases with increasing CO partial pressure or decreasing H₂ partial pressure, showing that the adsorbed CO and H₂ compete for active redox

sites and prohibit the other's adsorption. Using reactive CO and H_2 amounts, two models of coverage were defined with trends providing insight into the competitive redox mechanism between adsorbed CO and H_2 . CO oxidation is kinetically preferred over CuO_x -CeO₂, and the relative CO to H_2 coverage is shown to be the determiner for CO₂ selectivity. This new depiction of selectivity parameters provides a useful principle for the design of selective PROX catalysts.

KEYWORDS: PROX, oxidation selectivity, active site quantification, reactive titration, isotope exchange, copper cerium oxide

1. INTRODUCTION

CO preferential oxidation (PROX) is used to purify reformed H₂ (often containing up to 1% CO) for use in CO-sensitive Proton Exchange Membrane (PEM) Fuel Cells.^{1–5} Catalysts capable of high selectivity CO PROX also enable online catalytic detection and monitoring of CO (often below 100 ppm) after the H₂ purification step.⁶ A high CO oxidation selectivity in the reactive mixture is preferred to minimize H₂ consumption during gas purification and to minimize a false sensor response from H₂ oxidation in an online microsensor. Mixed copper cerium oxide catalysts (CuO_x-CeO₂) are highly selective for the CO PROX reaction across a wide range of CO pressures, in contrast to Pt or Au based catalysts, which lose CO₂ selectivity at low CO pressures;^{1,7–9} CuO_x-CeO₂ provides 100% CO₂ selectivity down to 200 ppm CO at 333 K.⁶

The loss of CO₂ selectivity with decreasing CO pressure results from the competitive mechanism between CO and H₂ over the same active redox site,^{6,10} which is generally accepted as the interfacial sites between Cu and Ce in a mixed oxide structure.^{11–18} The CO and H₂ competitive redox mechanism was proposed upon the inspection of H₂ addition effect during CO oxidation and vice versa,^{19,20} and was supported by our previously reported kinetic model assuming Mars and van Krevelen reaction pathways.¹⁰ On the basis of the competitive CO and H₂ redox mechanism, a higher CO coverage during reaction would lead to a higher CO₂ selectivity. Therefore, the goal of this paper is to quantify the amount of redox active CO and H₂ present on the surface of CuO_x-CeO₂ during PROX reactions of varying CO and H₂ pressures to provide further insight into the previously described competitive redox mechanism, and to describe the observed decrease in CO_2 selectivity with decreasing CO pressure.

Only a limited number of techniques can be used to quantify the amount of adsorbed CO and H₂ under reaction conditions.^{21,22} Steady-state isotopic-transient kinetic analysis (SSITKA) has been used to measure reactant amounts under reaction conditions,^{23–26} and is used here to probe the amounts of adsorbed CO and H₂ that are oxidized to redox products. Because of the economical concern of the expensive isotopic gas, a more cost-effective reactive titration method is also proposed and used for routine measurement of catalyst coverages. Using both methods, reactive coverages of CO and H₂ were quantified and used to develop a model relating variations in CO₂ selectivity to CO surface coverage under reaction conditions.

2. EXPERIMENTAL SECTION

2.1. Catalyst Preparation and Characterization. A copper cerium mixed metal oxide catalyst (CuO_x-CeO_2) was synthesized by the urea gelation technique and characterized by Brunauer–Emmett–Teller (BET) surface area measurements, X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), and X-ray photoelectron spectroscopy (XPS), with methods and results reported previously.^{6,10} The surface area of CuO_x -CeO₂ is

Received:	January 22, 2011
Revised:	March 12, 2011
Published:	March 21, 2011

115.8 m² g⁻¹. The absence of any copper metal or copper oxide phases observed by XRD indicates that either Cu is doped into the CeO₂ lattice or present at the surface or the subsurface in small dispersed domains. The bulk Cu atomic content in CuO_x-CeO₂ from AAS is 4.5%, and the Ce/Cu surface atomic ratio from XPS is 7:1, indicating that some Cu is segregated to the CuO_x-CeO₂ surface.

2.2. Oxidation Reactions. All reactions were carried out in a vertical U-shaped continuous flow quartz reactor with a diameter of 10 mm and heated in a tube furnace. All reactions were carried out at less than 10% CO and H₂ conversion to approximate differential conditions. The reaction temperature was controlled by a thermocouple placed in a well above the catalyst bed. All catalyst samples were sieved to retain particles between 75 and 125 μ m. Inert white quartz sand (SiO₂, -50 + 70 mesh; Sigma-Aldrich) was used to dilute the CuO_x -CeO₂ catalyst in a 1 to 10 mass ratio (excess sand) to avoid temperature gradients across the catalyst bed. The catalyst was pretreated in flowing O₂ (Praxair, 10% O_2 /He, certified standard) at 773 K (20 K min⁻ then 30 min soak) before cooling to the reaction temperature of 353 K. Subsequently, CO (Praxair, 1000 ppm CO/He, certified standard), H₂ (Praxair, 99.9999%), O₂ (Praxair, 1000 ppm O₂/ He, certified standard), and makeup He (Praxair, 99.9999%) were introduced using calibrated mass flow controllers (Laminar Technologies, Tylan 2900 series). Reactions were carried out using 50–900 ppm CO, 25–450 ppm O₂, and 10–40% H₂. Reaction rates and CO₂ selectivity were obtained by analyzing the products (CO_2 and H_2O) using an Agilent MicroGC 3000 with Plot Q and molecular sieve columns. The CO rate was calculated by taking the ratio of the CO₂ production molar flow rate (mol s^{-1}) to the catalyst weight (\tilde{g}). Similarly, the H₂ rate was calculated by taking the ratio of the H₂O production molar flow rate (mol s^{-1}) to the catalyst weight (g). CO₂ selectivity was calculated as the CO₂ production rate divided by the sum of CO₂ and H₂O production rates.

2.3. Reactive Titration. After about 16 h of activation to reach steady state at 353 K, reactive titration experiments were carried out by instantaneously removing either CO or H₂ from the feed stream and adding makeup He using a four-port zero dead volume switching valve (Valco) to retain the same total flow rate (150 sccm). All gas species were monitored by a Hiden HPR 20 Gas Analyzer at m/z of 2 (H₂), 18 (H₂O), 28 (CO), 32 (O₂), and 44 (CO₂).

2.4. Steady-State Isotopic-Transient Kinetic Analysis (SSITKA). SSITKA was carried out by making an instantaneous switch from ¹²CO to ¹³CO (1% ¹³CO, 1% Ar, 98% He, Cambridge Isotope Laboratories) using a four-port zero dead volume switching valve (Valco). The total flow rate was kept constant at 150 sccm. Once the concentration of all isotopes reached a steady-state level (about 10 min after the switch), the opposite switch from ¹³CO to ¹²CO was performed. All gas species were monitored at m/z of 2 (H₂), 18 (H₂O), 28 (¹²CO), 29 (¹³CO), 32 (O₂), 40 (Ar), 44 (CO₂), and 45 (¹³CO₂).

3. RESULTS AND DISCUSSION

3.1. Effect of CO Pressure on CO Rate, H_2 Rate, and CO_2 Selectivity. Before examining surface coverages, details of the kinetics of CO and H_2 oxidation over CuO_x -CeO₂ are presented here at low CO pressures to describe key variations in selectivity at these conditions. Under CO PROX conditions, CO partial pressure in the reactant feed affects CO and H_2 oxidation rates as

Figure 1. CO rate (a), H_2 rate (b), and CO₂ selectivity (c) as a function of CO partial pressure during PROX over CuO_x-CeO₂ at 353 K (stoichiometric CO and O₂, 10% or 25% H₂, 150 sccm; 90% confidence intervals on each CO and H₂ mean rate are calculated based on three measurements using a t-distribution; 90% confidence intervals on the selectivity were propagated from the rate errors).

well as the CO₂ selectivity (Figure 1). As shown in Figure 1a, CO oxidation rates continuously increase with increasing CO pressure from 50 to 600 ppm. At any CO pressure, the CO rate in 10% H_2 is higher than that in 25% H_2 , showing that the presence of H₂ reduces CO rates. On the basis of our previous study, this presumably results from competitive adsorption of CO and H₂ on the same active sites, by which the presence of more H_2 prohibits the adsorption of CO molecules, and hence reduces CO oxidation rates.¹⁰ Similarly, an increase in CO pressure reduces H₂ rates at both H₂ pressures (Figure 1b), and at any CO pressure, the H₂ rate with 25% H₂ is higher than that with 10% H₂. CO and H₂ oxidation rates are interdependent on their relative concentrations in the gas phase, presumably as a result of changes in relative surface concentrations, which is examined further in this study. Since the CO rate increases and the H₂ rate decreases with increasing CO pressure, the CO₂ selectivity also increases with increasing CO pressure, as shown in Figure 1c. The CO_2 selectivity in 10% H₂ is consistently higher than that in 25% H₂, and at 600 ppm CO, the CO₂ selectivity reaches 100% in 10% H₂.

Figure 2. CO and H₂ oxidation orders over CuO_x-CeO₂ for (a) CO pressure (50–500 ppm CO, 200 ppm O₂, 25% H₂), (b) H₂ pressure (10–40% H₂, 50 ppm CO, 25 ppm O₂), and (c) O₂ pressure (10–250 ppm O₂, 25% H₂, 300 ppm CO) at 353 K, where $r_{\rm CO} = k[{\rm H}_2]^{\alpha}[{\rm CO}]^{\beta}$. [O₂]^{γ} and $r_{\rm H2} = k'[{\rm H}_2]^{\alpha'}[{\rm CO}]^{\beta'}[{\rm O}_2]^{\gamma'}$; error is reported as a 90% confidence interval on the slope).

3.2. CO, H₂, and O₂ Reaction Orders at Low CO Concentrations. Figure 2 shows the CO and H₂ oxidation reaction rate dependence on CO, H₂, and O₂ pressures over CuO_x-CeO₂ and the resultant reaction orders at low CO and O₂ concentrations (50-500 ppm). CO rates were normalized to $r_0 = 10^{-7}$ mol g⁻¹ s⁻¹ and H₂ rates were normalized to $r_0 = 10^{-8}$ mol g⁻¹ s⁻¹ prior to the natural log function. All reaction orders measured are within the bounds expected from our previously proposed kinetic model describing a competitive adsorption mechanism between CO and H₂ on identical actives redox sites on the CuO_x-CeO₂ surface and are consistent with the higher CO and O₂ concentration measurements (CO: 0.5-4%; O₂: 0.25-1%; H₂: 5-100%) previously reported.¹⁰ The error values of the reaction orders are calculated assuming that the random samples follow a t-distribution, which was used to calculate 90% confidence intervals on the slope parameter.

Figure 3. Molar flow rates of CO, CO₂, and H₂O after removal of either CO or H₂ reactants from the feed stream. (Steady state reaction conditions at t < 0: 500 ppm CO, 250 ppm O₂, 25% H₂, balance He, 150 sccm, 353 K).

3.3. Quantitative Analysis by the Reactive Titration Meth**od.** During preferential oxidation of CO in H_2 , both CO and H_2 adsorb on the surface of CuO_r -CeO₂ and are oxidized to CO₂ and H₂O via a Mars and van Krevelen redox mechanism.¹⁰ The CO molecules that adsorb on the surface during the PROX reaction and subsequently oxidize and leave the surface as CO2 are denoted as reactive CO and are quantified by tracking CO₂ amounts. The CO molecules that adsorb on the surface during PROX but simply desorb as CO are denoted as unreactive CO and are quantified by tracking CO amounts (after some corrections as described below). Similarly, H₂ molecules that adsorb on the surface during PROX and oxidize to H₂O are denoted as reactive H₂ and are quantified by tracking H₂O formation. Figure 3 shows the molar flow rates of CO_2 and CO during an oxidative reaction with CO and H_2 at steady state (t < 0) and after removing CO from the reaction feed stream (at t = 0). Figure 3 also shows the molar flow rate of H₂O during a separate steady state reaction with CO and H_2 before (t < 0) and after removing H_2 from the feed stream (at t = 0).

The molar amounts of reactive CO and H₂ were calculated by integrating the area under the CO₂ and H₂O curves, respectively. The total amount of unreactive CO leaving the reactor during the titration event (A_{T}) is obtained by integrating the molar flow rate of CO over time. This amount includes CO adsorbed on the catalyst surface that does not oxidize to CO₂ on active sites, CO adsorbed on the inert SiO₂ diluent, and CO present in the gas phase. To accurately obtain the amount of unreactive CO adsorbed on the CuO_x -CeO₂ catalyst surface (A₁), the same measurement was carried out at the same conditions using (1) an empty reactor (no catalyst or SiO_2) to obtain the amount of gas phase CO (A_2) exiting the reactor over the same time period and (2) a reactor with only SiO_2 (no catalyst) to obtain the combined amount of gas phase CO and unreactive CO adsorbed on SiO₂ (A_3) . Then the amount of unreactive CO adsorbed on the catalyst was calculated as: $A_1 = A_T - A_2 - (A_3 - A_2)$. As shown in Table 1, the amount of unreactive CO adsorbed on SiO₂ is less than 4% of the amount adsorbed on the CuO_x -CeO₂ catalyst at all conditions investigated. Three runs were performed for each CO pressure, and the values reported in Table 1 represent the sample mean.

3.4. Quantitative Analysis by the SSITKA Method. SSITKA was used to quantify the amount of adsorbed reactive CO for

	unreactive CO on		unreactive CO on CuO_x -CeO ₂ (10 ⁻⁷ mol g ⁻¹)			
	reactive titration		reactive titration		SSITKA	
CO (ppm)	10% H ₂	25% H ₂	10% H ₂	25% H ₂	10% H ₂	25% H ₂
50	0.3	0.3	7.0	6.0		
100	0.7	0.4	19.4	9.7	3.8	3.8
200	2.0	0.5	58.7	26.3		13.3
300	1.9	1.0	63.7	49.2		
500	2.8	1.1	77.2	63.2		
600	3.1		102.2		32.5	

Table 1. Molar Amounts of Unreactive CO Adsorbed on the CuO_x -CeO₂ Catalyst and the Inert SiO₂ Diluent during PROX at 353 K

Figure 4. Molar flow rate of ¹²CO₂ during an isotope switch from ¹²CO to ¹³CO/Ar. The inset shows the normalized molar flow rates of ¹²CO₂, ¹³CO₂, and Ar during the isotopic switch. (Steady state reaction conditions: t < 0: 600 ppm ¹²CO; 0 < t < 600 s: 600 ppm ¹³CO; and t > 600 s: 600 ppm ¹²CO (all with 300 ppm O₂, 10% H₂, balance He, 150 sccm, 353 K).

comparison with that obtained using the reactive titration method. Unlike the reactive titration method, reactant and product concentrations, along with flow rates, remain undisturbed during the isotope switch from ¹²CO to ¹³CO. Thus analysis of the steady-state kinetic behavior of the catalyst surface is rigorous. The one failure of the reactive titration method is that the CO gas pressure is diminishing with time during the titration, and as detailed previously, the CO oxidation rate over CuO_x-CeO₂ markedly depends on CO pressure. From this comparative study using dual methods, we will explore influences from the gas phase CO pressure on measured surface coverages and identify any limitations from the reactive titration method.

The molar amount of reactive ¹²CO, measured by the isotope switch experiment, is calculated by integrating the area under the ¹²CO₂ curve after a ¹²CO to ¹³CO/Ar switch (Figure 4). The inset in Figure 4 shows the normalized molar flow rates of ¹²CO₂, ¹³CO₂, and Ar at steady-state (t < 0), after the isotope switch from ¹²CO to ¹³CO/Ar ($0 \le t < 600$ s), and after the reverse isotope switch from ¹³CO/Ar to ¹²CO (t > 600 s). Upon both switches, ¹²CO₂ and ¹³CO₂ curves show a mirror-image of each other and cross at 0.5 of the normalized transient response, as desired.

3.5. Effect of CO Pressure on Molar Amounts of Reactive CO, Unreactive CO, and Reactive H_2 . The molar amounts of

Figure 5. Molar amounts of reactive CO (a) and reactive H_2 (b) during PROX on CuO_{x} -CeO₂ as a function of CO partial pressure. Reactive CO is measured using both reactive titration (RT) and SSTIKA methods, and reactive H_2 is measured using the RT method. (stoichiometric CO and O_2 , 10% and 25% H_2 , 150 sccm, 353 K; error bars represent 90% confidence intervals on the mean based on three experiments).

CO that adsorbs and oxidizes to CO₂ (reactive CO) and of H₂ that adsorbs and oxidizes to H₂O (reactive H₂), measured using the reactive titration method and SSITKA, are shown in Figures 5a and 5b, respectively, as a function of the CO pressure in the reactant feed during PROX at 353 K. The molar amount of reactive CO increases sharply with increasing CO pressure (Figure 5a) in both 10% H₂ and 25% H₂, but is in all cases lower at the larger H₂ concentration. The amount of unreactive CO on the surface increases only slightly with increasing CO pressure and is also reduced by the presence of 25% H₂ relative to 10% H₂, as previously shown in Table 1. Because of the small amount of unreactive H₂ adsorbed on CuO_x-CeO₂ compared with the gas phase H₂, the unreactive H₂ amount is not reported here. The

amount of reactive CO is higher than that of unreactive CO at every CO pressure, with the disparity increasing at higher CO pressures, indicating that the majority of CO is adsorbed on active redox sites capable of oxidizing CO at 353 K. The amount of reactive H₂ on the surface during PROX decreases with increasing CO pressure and is larger at 25% H₂ relative to 10% H_2 as shown in Figure 5b. An increase in the amount of H_2 adsorbed on the catalyst surface and oxidized to H₂O is observed with an increase of H₂ pressure or a decrease of CO pressure in the gas phase. CO adsorption clearly inhibits H₂ adsorption and reaction, and thus CO coverage is a vital determiner for CO oxidation selectivity. At CO concentrations below 400 ppm, many reactive sites remain vacant (not yet saturated by CO) and either H₂ or CO can adsorb. However, as the CO concentration increases in this range, the coverage of reactive and unreactive CO increases markedly (as shown in Table 1 and Figure 5a). The increasing presence of adsorbed CO decreases the probability of H₂ adsorbing on the surface. At higher CO pressures, CO saturation leads to 100% CO₂ selectivity while preventing reactive adsorption of H₂. The final influence of this competitive adsorption is that the H_2 oxidation rate (per g of catalyst) decreases with increasing CO pressure (Figure 1) because of the change in coverage at these conditions.

The molar amount of reactive CO measured by SSITKA (Figure 5a) is marginally higher than that measured by reactive titration method at each CO pressure investigated, with a larger disparity observed at 600 ppm CO. Furthermore, the amounts of unreactive CO adsorbed on the CuO_x-CeO₂ catalyst measured by the SSITKA method are slightly lower than those measured by reactive titration at identical CO feed pressures (Table 1). Although more expensive to perform, isotope switch results should be more accurate because of the constant CO feed pressure, which will retain all surface species during titration and capture the true steady-state reaction conditions. Molar surface amounts measured using the SSITKA method are thus slightly larger because, with the higher gas phase CO pressure, more CO adsorbs and reacts over the time period of the titration event. This is also consistent with smaller molar amounts of unreactive CO measured using the SSITKA method; an increase in CO pressure in the gas phase promotes CO oxidation rather than desorption.

3.6. Effect of O_2 Pressure on Molar Amounts of Reactive CO and on Oxidation Rates. Polster et al. previously reported that neither CO nor H₂ rates are dependent on O_2 pressure at relatively high partial pressures (0.25%-1%).¹⁰ Figure 6a and 6b show that the CO rate, H₂ rate, and CO₂ selectivity also are not dependent on O_2 concentration at low O_2 pressures (50-250 ppm). It is often proposed that CO and H₂ oxidation over copper ceria follows the Mars and van Krevelen pathway through the facile synergistic redox cycles between the active copper and the support (Ce⁴⁺-O²⁻-Cu²⁺ \leftrightarrow Ce³⁺- \Box -Cu⁺).^{4,27-30} As long as the oxygen supply is prevalent to reoxidize the surface in a kinetically irrelevant step, rates are independent of O_2 pressure; ^{1,31,32} however, as the oxygen pressure approaches zero, both CO and H₂ rates become dependent on O_2 pressure if reoxidation is rate limiting.

Figure 6c shows that the amount of reactive CO on the surface, measured by reactive titration, is constant with O_2 concentration from 100 to 250 ppm O_2 . Apart from the independence of CO rate on O_2 partial pressure, this shows that excess gas phase oxygen does not compete with CO adsorption in any way that may affect CO adsorption and oxidation on active redox sites.

Figure 6. CO and H₂ rates (a), CO₂ selectivity (b), and reactive CO amounts (c) on CuO_x-CeO₂ as a function of O₂ partial pressure during PROX (300 ppm CO, 100–250 ppm O₂, 25% H₂, 150 sccm, 353 K; error bars represent 90% confidence intervals on the mean based on three experiments).

3.7. CO₂ Selectivity versus CO Coverage. To better describe the competitive reaction mechanism between CO and H₂ over CuO_x-CeO₂, and its impact on CO₂ selectivity, two coverage models were investigated for the purpose of correlating CO₂ selectivity with CO coverage using the previously described molar amounts of reactive CO and H₂. In model 1, the reactive CO coverage is defined as the ratio of the reactive CO amount at a given CO pressure to the reactive CO amount at 600 ppm CO (eq 1). With 600 ppm CO in the feed, the CO₂ selectivity reaches 100%; thus, the reactive CO amount at this condition is used as an estimate of the total number of active redox sites for either CO or H₂ in this model. In other words, the assumption is that at 600 ppm, the 100% CO oxidation selectivity is attained because only CO adsorbs on redox sites; thus active sites are presumed to become saturated with CO at this pressure in preference over H₂. Similarly, the reactive H_2 coverage is defined as the ratio of the reactive H₂ amount at a given CO pressure to the reactive CO amount at 600 ppm CO (eq 2). If CO and H₂ follow a true competitive adsorption and reaction mechanism on the same active sites, these sites should be equally accessible to both CO and H₂, and equally capable of oxidizing CO and H₂ at all CO pressures after adsorption (dissociative adsorption for H₂). For

Figure 7. CO_2 selectivity correlation with (a) reactive CO and H_2 coverages using coverage Model 1 relative to the reactive CO adsorbed at 600 ppm CO by reactive titration (stoichiometric CO and O_2 , 25% H_2 , 150 sccm, 353 K), and (b) reactive CO coverage using coverage Model 2 relative to the reactive CO and H_2 adsorbed at the same CO pressure by reactive titration (RT) and SSITKA (stoichiometric CO and O_2 , 10% and 25% H_2 , 150 sccm, 353 K).

this model to be sufficiently descriptive, the reactive CO coverage and the reactive H_2 coverage should sum to 1, since CO oxidation selectivity loss is due to the adsorption and oxidation of H_2 over the same active sites at lower CO pressures where CO does not saturate all redox sites.

$$\theta_{\text{CO-model 1}} = \frac{\text{Reactive CO amount (× ppmCO)}}{\text{Reactive CO amount (600 ppmCO)}} \quad (1)$$

$$\theta_{\text{H}_2 \text{-model } 1} = \frac{\text{Reactive H}_2 \text{ amount } (\times \text{ ppmCO})}{\text{Reactive CO amount } (600 \text{ ppmCO})} \quad (2)$$

_

Figure 7a shows reactive CO and H_2 coverage values based on Model 1 and using surface amounts measured from the reactive titration method as a function of CO pressure, along with their summation. Both the reactive CO coverage and the summation strongly increase with increasing CO pressure, with the summation only approaching 1 as the coverage approaches 1. Therefore, it is not accurate to assume that the active redox sites can equally oxidize CO and H_2 upon adsorption. As shown in Figure 7a, 86% CO₂ selectivity is achieved with a reactive CO coverage of only 28% and a reactive H_2 coverage of 11%. On the basis of this first competitive adsorption model and these coverage values, we expect the CO₂ selectivity to be 72% (calculated as $0.28/(0.28 + 0.11) \times 100\%$). However, selectivity is substantially larger than this and reflects the higher rate of CO oxidation relative to H₂ oxidation (Figure 1). Moreover, since the reactive H₂ coverage is observed to remain low (relative to CO) at all CO pressures, it is clear that the oxidized active sites (Cu–O*-Ce) are not as proficient at either dissociating or oxidizing H₂ at 353 K. This infers that CO oxidation is kinetically preferred over CuO_x-CeO₂ under the reaction condition presented.

Much of the inacuracy in Model 1 arises from neglecting the effect of CO pressure on the amount of reactive CO adsorbed as detailed in Figure 5a. Thus, in Model 2, CO coverage is defined as the ratio of the reactive CO amount at a given CO pressure to the sum of the reactive CO and H₂ amounts under at the same CO pressure (eq 3). For this model, coverages are reported using reactive CO amounts quantified by both the reactive titration method and the SSITKA method. Using this model, the reactive CO coverage dependence on PROX selectivity is shown in Figure 7b. If the reactive CO coverage is the only parameter controlling CO₂ selectivity, then CO₂ selectivity should show a one to one linear dependence on reactive CO coverage (indicated by the dotted line in Figure 7b). As observed, the CO coverage values, quantified by SSITKA, nearly match the corresponding CO₂ selectivity. Thus, this model confirms that the very high selectivity achievable over CuO_x -CeO₂ arises from a competitive redox mechanism of CO and H₂ over the same active sites, with the relative coverages of CO and H₂ controlling the CO₂ selectivity. Coverages calculated using reactive CO and H₂ amounts measured by reactive titration also validate this model. These values are slightly lower than the corresponding values measured using the expensive SSITKA method; however, general trends and coverage models can still be assessed using this inexpensive quantification method in certain cases. Validation using isotopes, however, is recommended for accuracy.

4. CONCLUSIONS

Through a combined study using both the reactive titration method and the steady-state isotopic-transient kinetic analysis, quantities of reactive CO and H₂ on the surface of CuO_x-CeO₂ during steady state CO PROX in excess H₂ were measured. The reactive titration method was introduced as an inexpensive protocol for measuring molar amounts of reactive CO, unreactive CO, and reactive H₂. It is shown that CO adsorption inhibits H₂ adsorption and reaction and vice versa. By defining reactive CO coverage as the ratio of the reactive CO amount at a given CO pressure to the sum of the reactive CO and H₂ amounts at the same CO pressure, the one-to-one linear dependence of CO₂ selectivity on reactive CO coverage indicates that relative CO and H₂ coverage is the determiner of CO₂ selectivity. Therefore, the high CO₂ selectivity achievable over CuOx-CeO2 arises from a competitive redox mechanism over the same active sites. The coverage model and general trends of adsorbed molar amounts can be assessed using the inexpensive reactive titration method in certain cases. Validation using SSITKA, however, is recommended for accurracy.

AUTHOR INFORMATION

Corresponding Author

*E-mail: baertsch@ecn.purdue.edu. Phone: (765) 496-7826. Fax: (765) 494-0805.

ACKNOWLEDGMENT

This work was supported by NSF (CBET Career Award #0644707).

REFERENCES

(1) Snytnikov, P. V.; Popova, W. M. M.; Men, Y.; Rebrov, E. V.; Kolb, G.; Hessel, V.; Schouten, J. C.; Sobyanin, V. A. *Appl. Catal.*, A **2008**, 350, 53–62.

- (2) Gamarra, D.; Belver, C.; Fernández-García, M.; Martínez-Arias, A. J. Am. Chem. Soc. 2007, 129, 12064–12065.
 - (3) Gamarra, D.; Martínez-Arias, A. J. Catal. 2009, 263, 189–195.
- (4) Caputo, T.; Lisi, L.; Pirone, R.; Russo, G. Appl. Catal., A 2008, 348, 42–53.
- (5) Gamarra, D.; Munuera, G.; Hungría, A. B.; Fernández-García, M.; Conesa, J. C.; Midgley, P. A.; Wang, X. Q.; Hanson, J. C.; Rodríguez,
- J. A.; Martínez-Arias, A. J. Phys. Chem. C 2007, 111, 11026–11038.
- (6) Polster, C. S.; Baertsch, C. D. Chem. Commun. 2008, 4046–4048.
 (7) López, I.; Valdés-Solís, T.; Marbán, G. Int. J. Hydrogen Energy 2008, 33, 197–205.

(8) Marbán, G.; Fuerte, A. B. Appl. Catal., B 2005, 57, 43-53.

(9) Gómez-Cortés, A.; Márquez, Y.; Arenas-Alatorre, J.; Díaz, G. *Catal. Today* **2008**, *133–135*, 743–749.

(10) Polster, C. S.; Nair, H.; Baertsch, C. D. J. Catal. 2009, 266, 308-319.

- (11) Martínez-Arias, A.; Hungría, A. B.; Munuera, G.; Gamarra, D. *Appl. Catal., B* **2006**, *65*, 207–216.
- (12) Martínez-Arias, A.; Gamarra, D.; Fernández-García, M.; Wang, X. Q.; Hanson, J. C.; Rodriguez, J. A. J. Catal. **2006**, 240, 1–7.

(13) Liu, W.; Flytzani-Stephanopoulos, M. J. Catal. 1995, 153, 317–332.

(14) Liu, W.; Sarofim, A. F.; Flytzani-Stephanopoulos, M. Chem. Eng. Sci. **1994**, 49, 4871–4888.

(15) Liu, W.; Flytzani-Stephanopoulos, M. Chem. Eng. J. 1996, 64, 283–294.

(16) Sedmak, G.; Hŏcevar, S.; Levec, J. J. Catal. 2003, 213, 135–150.
(17) Luo, M.-F.; Song, Y.-P.; Lu, J.-Q.; Wang, X.-Y.; Pu, Z.-Y. J. Phys.

- Chem. C 2007, 111, 12686-12692. (18) Skårman, B.; Grandjean, D.; Benfield, R. E.; Hinz, A.; Anders-
- son, A.; Wallenberg, L. R. *J. Catal.* **2002**, *211*, 119–133. (19) Luo, F.; Ma, J.-M.; Lu, J.-Q.; Song, Y.-P.; Wang, Y.-J. *J. Catal.*
- (20) Wang, J. B.; Lin, S.-C.; Huang, T.-J. Appl. Catal., A 2002,

(20) Wang, J. B.; Ein, S.-C.; Huang, T.-J. Appl. Catal., A 2002, 232, 107–120.

(21) Zeradine, S.; Bourane, A.; Bianchi, D. J. Phys. Chem. B 2001, 105, 7254-7257.

(22) Bourane, A.; Dulaurent, O.; Bianchi, D. J. Catal. 2000, 195, 406-411.

- (23) Shannon, S. L.; Goodwin, J. G., Jr. Chem. Rev. 1995, 95, 677–695.
 - (24) Savva, P. G.; Efstathiou, A. M. J. Catal. 2008, 257, 324–333.
- (25) Pansare, S. S.; Sirijaruphan, A.; Goodwin, J. G., Jr. *J. Catal.* **2005**, 234, 151–160.
- (26) Rothaemel, M.; Hanssena, K. F.; Blekkana, E. A.; Schanke, D.; Holmen, A. *Catal. Today* **1998**, *40*, 171–179.
- (27) Wang, S.-P.; Zhang, T.-Y.; Su, Y.; Wang, S.-R.; Zhang, S.-M.; Zhu, B.-L.; Wu, S.-H. *Catal. Lett.* **2008**, *121*, 70–76.
- (28) Cao, J.-L.; Wang, Y.; Zhang, T.-Y.; Wu, S.-H.; Yuan, Z.-Y. *Appl. Catal.*, B **2008**, 78, 120–128.
- (29) Sirichaiprasert, K.; Luengnaruemitchai, A.; Pongstabodee, S. Int. J. Hydrogen Energy **200**7, 32, 915–926.

(30) Wang, X.; Rodriguez, J. A.; Hanson, J. C.; Gamarra, D.; Martínez-Arias, A.; Fernández-García, M. J. Phys. Chem. B 2005, 109, 19595–19603.

(31) Ayastuy, J. L.; Gurbani, A.; González-Marcos, M. P.; Gutiérrez-Ortiz, M. A. Ind. Eng. Chem. Res. 2009, 48, 5633–5641.

(32) Lee, H. C.; Kim, D. H. Catal. Today 2008, 132, 109-116.